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ABSTRACT

The photon correlations of resonance fluorescence emitted by a degenerate

two-level atom near a metal surface are studied. An intense non-monochromatic

optical laser drives a low-lying atomic transition, and the emitted fluorescence

is detected by a photon counter. An expression for the spontaneous-decay

operator is derived, and it appears that the various substates of the upper level

have a different lifetime due to the presence of the surface, or equiva'.antly,

due to the loss of spherical symmetry. The temporal photon correlation function

is then evaluated in terms of a photon-emission operator and the time-evolution

operator for the atomic density matrix. The general theory is exemplified with a

detailed elaboration of the J a 0 # Js - 1 transition, for which the two-photon

correlation is obtained explicitly as a function of the lifetime A(h), depending

on the atom-surface distance h, the laser linewidth, the detuning from resonance,

and the dipole-coupling strength with the external field.
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I. INTRODUCTION

Irradiation of an atom by an optical laser with a frequency wL in close

resonance with an electronic transition frequency (level separation) will cause

the atom to absorb photons from the incident field. Subsequent spontaneous decay

is accompanied by the emission of fluorescence radiation, which is amenable to

observation in an experiment. Detailed properties of the scattered radiation,

like its intensity, polarization, spectral profile and temporal photon

correlations reflect the dynamical evolution of the atom in its environment. A

generic method to obtain information about interatomic potentials, for instance,

is by measuring the line shape of the fluorescence, which is emitted during a

y collision. In a similar way it should be feasible to study the behavior of an

atom in the vicinity of a surface, or the alterations in its optical properties

due to the presence of an optically-active substrate.

Resonance fluorescence of a free atom (gas phase or atomic beam) in a strong

external field has been studied extensively during the last two decades.

Theory 1-3 predicted a three-line spectrum for a two-state atom, which was

confirmed by experiments.4 -6 The non-classical nature of fluorescence radiation
7-9

was established by the observation of antibunching and sub-poissonian

statistics10 in the temporal distribution of the photon emissions. Also combined

time- and frequency-resolved photon correlations were found to be in excellent

agreement with theory. 11 6  As stated in the first paragraph, the

N% characteristics of the fluorescence are affected by the atom's surroundings.

Host notably is the change in lifetime of an excited atomic state due to

17 18
confining boundaries for the radiation, like in a cavity, near a surface, or

in a waveguide.19  In a series of experiments20 -24 with molecular dye films on a

didlectric substrate, the theoretically-predicted25 dependence of the decay

constants (inverse lifetimes) on the distance of the molecule to the surface was

I



found indeed. In this paper we consider an atom near a metal surface (with

perfect conductivity), which is illuminated by a strong non-monochromatic laser

beam, and we study the correlations between the emitted fluorescent photons.

Recently, the spectral distribution of the fluorescence was calculated2 6'2 7 for

the same configuration, in the case where the atom could be accounted for by a

two-state model, and where a semiclassical description of the emission process

was adopted.

II. DRIVEN ATOM

An atom is situated at r - he z, h > 0, above the xy-plane, which separates

the vacuum z > 0 from a perfectly-conducting substrate z < 0. This system is

irradiated by a laser, with an electric-field component

Ei(r,t) - EoRe c e , (2.1)

where E is the amplitude, c the normalized polarization vector (c.C* - 1), k the

wave vector, perpendicular to c (k'c - 0), and 4(t) a stochastically fluctuating

phase, which gives rise to the laser linewidth. At the surface this inrident

field is reflected, and the sum field, evaluated at the position of the atom

becomes

__ -ilw~t+*(t))

EL(t) - 21 Re e [!Lcos(hk ) + icsin(hk5 )J , (2.2)
0

where the polarization vector is divided into perpendicular and parallel

components with respect to the xy-plane, and kW - 's is the z-component of the

wave vector. For solids with a finite penetrability (dielectrics), 'the factor in

square brackets is different, but the time dependence of this external field

remains the same.
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The laser frequency wL is assumed to be tuned in close resonance with the

level separation w 0  we - w > 0 between two (possibly degenerate) levels with

energy w we (excited) and w g (ground). If we suppress irrelevant quantum

numbers, we can write the atomic wave functions as Ijeae> and igm,>, with J and

m the angular-momentum quantum numbers. In terms of the projectors

P e - Ijeme><Jeel (2.3)
me

P, - 9 mg><JgmgI (2.4)

m

onto the multiplets, the atomic Hamiltonian can be represented by

Ha 
= AW ePe + YAWgP . (2.5)

Coupling of the atomic dipole p to the external field is governed by the

interaction Hamiltonian

-. _L(t) -)e -i(+e + H.c. (2.6)

where we made the rotating-wave approximation and introduced a 'Rabi operator'

0(h) - 2(09/%)Pe[ V-WCos(hk ) + iP.cusin(hk)]Pg , (2.7)

which generalizes the Rabi frequency (a real number) for non-degenerate atoms in

free space.2 8 Notice that Q(h) is not Hermitian and that it depends explicitly

on the normal distance h of the atom to the surface. k convenient concept will

turn out to be the effective (non-Hermitian) surface-dipole moment W(x). defined

as

es(x) - 2(cos(x)! + i sin(xi)P, (2.8)

*1 P
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where x is a dimensionless normal-distance parameter. Then the Rabi operator

becomes

0(h) - (E oA) PeGs (hkz )')P • (2.9)

The equation of motion for the density operator p(t) of the atom in the

laser field and near the surface is

i& - [H - u.EL(t),p] - i}ir(h)p , (2.10)

where the Liouville operator r(h) accounts for the spontaneous decay. Its

definition will be elaborated in the next section. We mention that r(h) depends

on h, which embodies the second geometry dependence of the equation of motion for

P(t).

III. SPONTANEOUS DECAY

Due to the coupling of the atomic dipole U to the vacuum of the

electromagnetic field, the atom decays from its excited state to its ground
29

state, together with the emission of a fluorescent photon. In a previous paper

we evaluated the atomic relaxation operator r(h) for an arbitrary atom with

degenerate levels and near a perfect conductor. For optical transitions we can

make the secular approximation30 (sometimes called 'elimination of fast-

oscillating terms'31) and neglect the imaginary parts of the relaxation

constants. If we subsequently restrict the number of atomic levels to two, which

are coupled by the laser, then r(h) acquires the explicit form

r(h)c- j g (c. .gg(h)J m ><J uala

+ cm'm (h)ljeme><j m'I)
egge



S'm(c , (h) + c , "(h))
mmo e g g e e g g e

Ig Sm ><j m'l<J e ellem> , (3.1)

which defines its action on an arbitrary density operator a. Through the

functions

b(x) a 1-3[ cos(2x) _ sin(2x)] (3.2)
bj~) -2 3 32

(2x) (2x)

b (x) 1 ,sin(2x) + cos(2x) sin(2x)] (3.3)2( 2x (2x)2  (2x)3

the relaxation constants can be expressed in terms of the matrix elements of the

perpendicular and parallel components of the dipole moment, according to

-3

emg g e 3V}Ec 3

i x [ bj.(w 0hlc)<J e me J jlj 9m 9>.<J mgJ, I J 'm'>

+ bl(Woh/C)<Jeme I.IiJgm>-<Jgm i l jemU>) (3.4)

The presence of the surface is fully incorporated in the functions b± and b

which approach unity for h - .

Next we take advantage of the rotational properties of the atomic wave

functions and the fact that v is a vector operator. With respect to the

spherical unit vectors

!0 ' -F1 (extiey)//2 (3.5)

we can decompose " + Up as

=(3.6)_ Pa o-% - ,. t.
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and from V = it follows that

1 (3.7)i =(-1) j_,

Then we write b0 b- and b~1 = bi, which enables us to cast Eq. (3.4) in the

form

3
W

C mm mim (h) ~ 0
e gg e 31hc

L b,(wh/c)<Jeme IUJgmg><JgmJtIje m;> 0.8)

Matrix elements of pi can be simplified with the Wigner-Eckart theorem, which

states that
32

<je eV4 im > - 0m IIJeme)< j IIJ>//2- (3.9)

and the matrix elements of p t then follow from Eq. (3.7). Combining Eqs. (3.8)

and (3.9) then yields

Sme m m'm (h ) - Afj b (woh/c)(Jgm$ 1njjeme)(Jml njjem') , (3.10)

egg a 0 g Itg

where we introduced the Einstein coefficient Af for a free atom (no surface)

,f3 I<j l'~ >1 2
3 o e (3.11)

Af 30 2j 6+1

Since the Clebsch-Gordan coefficients are real, all relaxation constants

,**mom  j (h) are real. Expression (3.10) reveals the surface effect,

incorporated in the parameter functions b (w 0oh/c) on the decay constants.

Insertion of Eq. (3.10) into Eq. (3.1) gives r(h) in terms of Afth and

4
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geometrical Clebsch-Gordan coefficients. The coefficients c *6,(h) are only
,~ g g e

non-zero if m -m m'-m', as follows from Eq. (3.10), so for mg - m' we have me

M i'. Therefore the summation over m' in the first two terms of Eq. (3.1) is
e e

trivial, and furthermore we notice that the summation over mg involves only the

decay constants. With these observations the expression for r(h) reduces to

r(h)o - Am (h)(JIe m e><Jeme 0 + jJemeeXJle ) " Afj b,(w°h/c)

me

.j ( gm 9 [ eme Ig9mg>iJe m eIGIJeme><Jgg I(Jgmg 1T J em ; )  (3.12)
i memna

mtmI
eg

where A (h) is defined by
me

A e(h) -Aj b(w 0h/c) (JgmglITJeme)2  (3.13)

T mg

From the equation of motion (2.8) we find that the population of level

Iieme> obeys

d <JemeJP(t)Ij me> = "<JemeJ(r(h)p(t))Ijeme>  (3.14)

in the absence of a laser field, and from Eq. (3.12) we obtain

<Jam =j(e(h)p(t))jju*> - A Meh)(JemeIp(t)IJose> . (3.15)

Hence the population of ljea.> decays exponentially, with an inverse lifetime

equal to A (h), which elucidates the significance of this parameter. Without a

surface we have b 1, and the summations in Eq. (3.13) can be performed to give

the result

An (h) - Af (3.16)
e
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Therefore, the population of an atomic level i e m> decays in free space with AfV

which is independent of m . This in turn expresses the rotational invariance of

spontaneous decay for a free atom. Conversely, a preferred direction in space

(the z-axis), which is imposed by the presence of the surface, destroys the

rotational symmetry, which implies that the relaxation depends on the orientation

of the atom (the m -value of the substate). From b b-1 we readily derive

A (h) - A_ (h) , (3.17).e e

which expresses the remaining rotational symmetry about the z-axis.

IV. TRANSFORMATION AND AVERAGE

In the equation of motion (2.10) the Hamiltonian is explicitly time

dependent through the external field EL(t). With the standard transformation3

of the density operator

' p'(t) - e , (4.1)

where L is the commutator with the projector on the ground state, e.g.,g

Lga - [P ,a) , (4.2)

the time dependence is greatly simplified. We find the equation for p'(t) to be

AL - (L (h) + L - ir(h))p' (4.3)
dt d I dt

in the compact Liouville notation. Oscillations with the optical frequency wL
0.

have disappeared, and the phase fluctuations only enter as a multiplicative

factor d#/dt to p'(t), which is the standard form of a stochastic differential

equation. Here the Liouvillian Ld(h) is defined as
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L d(h)o = [H d(h),o] (4.4)

in terms of the dressed-atom Hamiltonian

H d(h) - H a + AWLPg9 - IA(Q(h) + 0(h) t )  (4.5)

which has the significance of the atom, dressed with the photons of the laser and

including the dipole interaction. 
30

Due to the term L d /dt in Eq. (4.3), the density operator p'(t) is a

stochastic process. Only its average

nl(t) - <p'(t)> (4.6)

has relevance, and the equation for 1(t) reads34

-i = (Ld(h) - iN - ir(h))n , (4.7)

with

W " AL 2  (4.8)
9

in terms of the half-width at half maximum X of the Lorentzian laser profile.

Both the laser linewidth (W) and spontaneous decay (r(h)) give rise to

damping of the free evolution (Ld(h)) of the dressed atom. After a transient

time of the order of (A + Af) " , following the switch-on of the laser, the atom

will have reached a steady state. If we write

H-li- n(t) . (4.9)
t-Oft

then this It is the solution of

(Ld(h) - iw - ir(h))U - 0 . (4.10)



Since the external field is assumed to be a CW laser, we will always consider the

atom to be in the stationary state 1T.

V. FLUORESCENCE

Continuous excitation of the upper states Ijeme> by the laser and subsequent

spontaneous decay to the ground states Ij m > goes together with the emission of

a stationary (fluorescence) radiation field. This signal is detected by a

29
NO. photomultiplier tube (PM) at a distance r from the atom. In a previous paper

we derived the general expression for the fluorescence in the far field, which

reads

t' L2

E (rt) L [rx((t+T-r/c) + W'(t- -r/c))] x (5.1)
4nTc c r

0

Here, r - r/r is the direction of propagation, and T - r-e h/c equals half the

delay time between the directly-emitted wave and the wave which is first

reflected by the surface. The time dependence of the operator V represents the

Heisenberg picture according to

~iL(t-t o )

P( - 0 )(t 0 ) (5.2)

for any time interval t - t and in terms of La - )'l(Hl,o] with H the

Hamiltonian of the entire system. If we divide the operator pas V +

then -g' is defined as

(5.3)

VI. DETECTION

From Eq. (5.1) it follows that the polarization of the fluorescence is
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determined by the vector operators V and p', which have a different direction in

space and a different retardation time. In order to keep track of the

polarization properties of the radiation, we suppose that the radiation passes a

polarizer, before entering the PM, which transmits radiation with polarization

E.£. From the theory of photon detection by a PM,35 ,36 we then know that the-p"

detector responds to the positive frequency part of the scalar quantity

6(t) - Ef(rt).-c* (6.1)

which is the c component of the fluorescence. Then we position the polarizer in-p

such a way that the angle of incidence is zero (e.g., r-E 0), and we suppress

the overall retardation with r/c. We then find

2 iLt -iLr
2 e + -e ]J.C* (6.2)

41Tc c r
0

where p and V' are time independent operators (Schrodinger picture). Then we

notice that the surface can only have a significant effect if the distance

between the atom and the xy-plane is a few optical wavelengths. Hence the

retardation T in Eq. (6.2) is of the order of a few optical cycles (% - w 0),

which implies that we can neglect the interaction term with the laser in L in the

exponentials. In physical terms this means that the laser cannot cause a

transition between the upper and lower states on a tim scale r, which is

completely justified for optical lasers. Furthermore, the is merely an

overall factor, which hardly affects the time evolution of &(t). Therefore, we

can safely make the substitution La -+ [H a,o/% in exp(tiLr) and L . Combining

everything then yields for the positive frequency part of 9(t)

;
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2
W 0 tt

)(t) 0 iLtP (11 (W E*))Pe) . (6.3)
4uc c r

0

VII. PHOTON CORRELATIONS

If the active part of the PM is exposed to electromagnetic radiation it will

absorb photons from this incident field. Time correlations between various

photons are most conveniently expressed in the function 12(tilt 2 )dt Idt2 which

has, by definition, the significance of the probability for the detection of a

photon in [tl,t 1+dt1] together with a detection in [t2 ,t2+dt2 ], and irrespective

of detections at other times. The basic relation between 12 and the incident

radiation is given by 3 5 ' 3 6

: I2 (tipt 2  = 2 '(l '(2 +(2 +(t )> ,(7.1)

for t2 > t1. Here, C is a detector parameter (depending on efficiency, aperture,

etc.) and the angle brackets indicate a quantum average. For our case, where the

laser field is taken as a classical wave with a stochastic phase, the brackets

also include an average over the process #(t). The quantity <...> in Eq. (7.1)

is usually referred to as the intensity correlation of the field. For quantum

radiation, like fluorescence, the different factors in brackets do not coumute,

which gives rise to non-trivial correlations between the detections of photons.

It is a standard procedure to work out the intensity correlation and to

express the time regression from t1 to t2 in the time-evolution operator for the

density operator

-i(Ld(h)-iw-ir(h))tU(t) - e (7.2)
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and the photon-emission operator R, defined by
3 7

Ra V ()0) (-)(0) . (7.3)

If we assume that the atom has reached its steady state 1I, then the intensity

correlation function is found to be

1 2 (t1 ,tI+r) =_C2TrRU( )Rf = f(T)I T > 0 (7.4)

which defines the function f(r). Here, I equals the uncorrelated intensity of

the radiation, which can be expressed as

I - TR2 . (7.5)

For a zero delay time T we have U(0) - I and f(O) 2 ( TrR 2U/I. With Eq.

(6.3) we obtain

R2  0 , (7.6)

and therefore

f() - . (7.7)

This famous relation for the detection of two fluorescent photons is termed

ntibunching. 3 8  In the case that the delay time - is very long, we find

f(-) - 1 (7.8)
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which shows that the second detection is independent of the first one, e.g., the

detections are uncorrelated. Equation (7.8) follows from the identity

lim U(t)a a lITro (7.9)

for any a, which states that every a evolves to a unique steady state 1 and that

the trace of a is conserved in the time evolution with U(t).

With Eqs. (7.3), (6.3), (2.3) and (2.4) we find for the emission operator

the general expression

R - I lJgmg><Jgml <JemelOjem;

m m

Mee
p e e havo -p psg more de of th> ( 0 ) 0

2 2 2
where an overall factor kw 0/4%c 0c r) is omitted, since it can be absored in the

detector parameter C. Matrix elements of V8(w 0 0 can be evaluated explicitly

with Eq. (3.9).

VIII. a1 - . - ITRANSITION

;~p. In order to study the effect of the presence of the metal surface on the

photon correlations, we have to prescribe more details of the system. In the

remainder of this paper we consider the important example j - 0 + Js U 1. For

j - 0 we have a - 0 only, and in view of Eq. (3.9) this non-degenerate state

couples only with J. = 1, which is three-fold degenerate. We introduce the

abbreviations
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Ijimg> " 10> 0 > , (8.1)

Ijeme> - I1 me> In> ,n me m",01 (8.2)

-' Spontaneous decay of this atom is described by the Liouvillian r(h) from Eq.

(3.12), and the inverse lifetimes of the states In> are given by Eq. (3.13). The

occurring Clebsch-Gordan coefficients all have the form

(0 0 1 ,11 n) - 6 , (8.3)

which yields for the relaxation constants

A n (h) - Afb( 0 h/c) . (8.4)

We observe that the substates In - ±l> decay with Afbl1(W0h/c), which equals the

inverse lifetime of a dipole, oriented parallel to the xy-plane. The substate

In - 0> has the Einstein coefficient Afb(woh/c), and therefore it decays as a

perpendicular dipole. Notice that the differences in decay constants of the

various substates are merely determined by the geometry of the system. A two-

state model-atom treatment of fluorescence near a surface leaves the dipole

direction, and thereby the lifetime of the excited state, undetermined. One can

then choose the direction of the matrix element <eliyS> arbitrarily, and

subsequently average results over a randomization of this direction. It should

be obvious now that this is not a correct procedure.

The spontaneous-decay operator for this system attains the simple form

r(h)o - A An (h)(In><nlo + oln><Il - 21g><I<nIloln>) , (8.5)
~n

and it involves only the Einstein coefficients A n(h) for the three substates.

qTi



IX. ATOMIC STATE

In this section we expand the equation of motion (4.7) for the atomic stateI(t) in matrix elements. The external field enters through the Rabi operator

0(h), Eq. (2.9), and we shall abbreviate its non-zero matrix elements as

a (h) - <nlQ(h)Ig> , (9.1)

which are explicitly

E0 (h) = -' < lljl lo> cos(hk )E.eO (9.2)

0 Eo

1 (h) - < ll.llo>i sin(hk )E.e* (9.3)

With the definitions of Ld(h), W and r(h) we then obtain

- +d- )I<ln'>AnIIj'> - ji(Q<IIg> - <glnln'>) , (9.4)<n =- ( n +n)nn '- ,( nn~ s n

d <glnlg> - A <nlnln> - ii (an<glnln> - 0*<nlnlg>) (9.5)
t n n i

I_ <nlnlg> - -(A + A - i&)<nlnlg> + ti( n<glnlg> - Qn,<nlnln'>) . (9.6)

T <gflln> - -(IAn + A + 1A) <gjjnl> - li(Q*<g1nls> - O,<n'Ifnln>) , (9.7)n- nn'T

where the dependence of A and 0 on h is suppressed, and we introduced the

detuning of the laser from resonance by

A = - %o . (9.8)

If we make all the combinations with q and n', then Eqs. (9.4)-(9.7) constitute a

set of 16 coupled first-order linear differential equations.



X. INTENSITY CORRELATIONS

For the J. = 0 + Je 1 transition, the photon-emission operator R, Eq.

(7.10), reduces to

Ro - Pg <nloln'><qnl (w)'Eplg>*<n'l~s( w)'Epg> , (10.1)
Tm'

and the matrix elements of v ( -) are

<nJ s(woT)Jg> - [cos(w)eo6o + i sin(w0 )-I e , <lIpJ JO> 2//3

nlm±l (10.2)

We notice that the summation over n and n' in Eq. (10.1) is just a number (not an

operator), and therefore Ro is proportional to the projector P on the groundg

state for every a. This reflects the fact that after every emission the atom is

necessarily in its ground state lg>. Since for jg = 0 this state is non-

degenerate, the final state after a photon emission is unique, or in other words,

independent of the history of the atom. If the ground state were degenerate,

then we observe from Eq. (7.10) that the density operator of the atom after

emission is a superposition of (Liouville) substates Jj m >J mil, where the

distribution over states depends on the matrix elements of a, which equals the

density operator Just before the emission.

Combination of Rqs. (7.5) and (10.1) gives for the intensity of the

fluorescence

I - C .l<nl,( o). plg>l2  , (10.3)

in terms of the steady-state populations n - <nJUq> of the upper levels. The

tvo-photon correlation f(t) then becomes

f(t) - CTrRU(t)P , (10.4)
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which involves only a single photon-emission operator R, rather than two as in

Eq. (7.4). This is again due to the fact that the ground state is non-

degenerate. After the first emission the density operator equals Pg, which is

the right-most factor in Eq. '10.4).

Substitution of the exponential for U(t), Eq. (7.2), into Eq. (10.4) gives

an explicit expression for the correlation function f(t). The Liouvillian

L d(h) - iw - ir(h), however, is a 16 x 16 matrix, which makes the evaluation of

the exponential intractable, in general. In most practical cases (see the next

section), the computation of f(t) is facilitated if we first transform to the

laplace domain. With

r(s) " m0 dt e-Stf(t) (10.6)

.- we find immediately

F(s) - TrR (10.7)s + iLd(h) + W + r(h) Pg (0
dl

which only requires the inversion of the matrix. Of course, the result must be

transformed back to the time domain in order to achieve an explicit expression

for f(t).

XI. POLARIZATION

To fix the geometry of the experiment, there are four directions which

remain to be specified. These ares (1) the laser polarization c, (2) the laser

propagation direction I (restricted by i-c - 0), (3) the observation direction

and (4) the polarization unit-vector cp (restricted by r.g = 0). We shall'S - - -p

consider two complementary situations, for which we evaluate the two-photon

correlation function explicitly.

0,



(a) Linear polarization. The laser polarization is chosen as E - .0 - .z for

which the direction of propagation i must be in the xy-plane. Then we have

k = 0, and from Eqs. (9.2) and (9.3) we find that the only non-zero matrix

element of the Rabi operator is

- (h) - 2 "l (11.1)

which is independent of the distance h between the atom and the surface. From

Eqs. (9.4)-(9.7) it follows that this external field couples only the ground

state Ig> with the upper state 10>,which has the decay constant A0(h) -

wAfb±(oh/c). The PM will be positioned in such a place that it detects

radiation, which is emitted along the surface, e.g., r is in the xy-plane. Then

we filter the fluorescence with cp e0 " For this configuration the photon-

emission operator becomes

Ro = Pg <0oO> , (11.2)

2where a factor l<lllPIl0>I 4/3 is absorbed in-€.

(b) Circular polarization. In this case we take c e.d t !p. -!0 - and

therefore k - -k -w /c. The interaction with the laser field now becomes

z 0

W1 a tl (h)I<jaIjo> i sin(-hk) (13

which couples only Ig> with l1t>. Hence the relevant Einstein coefficient equals

A*I(h) - A bfI(w 0h/c), and for the operator R we obtain

on2
Rt P$ <tloJl> sin2 (w h/c) • (11.4)

If we denote the wavelength of the radiation by A - 2w/k Z 2vc/Wa, then we notice

that both 0 t(h) and R l vanish for h - n x X/2, with n - 0,1,2,.... - For

circular polarization the fluorescence intensity is identically zero if h equals

0ic4rtefloecnei
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an integer multiple of A. Furthermore, the emission operator, the Einstein

coefficient and the Rabi frequency are identical for left- and right-handed

polarizations, and so the photon correlations are identical (provided of course

that we take E - E ), which expresses again the rotational symmetry about the z-

axis.

Now it is an easy matter to evaluate f(s), Eq. (10.7), for both linear and

circular polarization simultaneously. The set of equations (9.4)-(9.7) defines

the matrix s + iLd(h) + W + r(h), and with some algebra we then find

Cs) M x " n 2
n s l 2l +A) + (A +s)[(s+IA +A) + a 2

x [ 6nl cos2(whc) , (11.5)

for n - -1,0,1. Then the fluorescence intensity follows from

I lim f (t) lm sr (s) • (11.6)
Ti t - n s0 T

XII. SPECIAL CASES

Transformation of the general result (11.5) for (s) to the time domain is

straightforward, but the expression for f n(t) is very untransparent. A case of

practical importance is the low-intensity limit, where the coupling strength

between the dipole and the laser field

2 go

,5h

tends to zero in comparison with the relaxation parameter A . Normalized with

the uncorrelated intensity I - f (e), f (t) is found to be

f- A (A+iA) 2 + a2  -Ant

f n(t)/ I + 1An (-1-A)+ A2 e TI



2

A.A 1-()+IA n) t+ e I"x~~~

X+ An  (X-A) 2 + 62

x(X2 - 1A2 -2 )cos(&t) - 2X&sin(At)] (12.2)n

Figures 1 to 4 illustrate the dependence of f (t)1I on the parameters a and X,

the laser polarization and the distance of the atom to the surface.

For higher irradiances we assume that wL is in very close resonance with wo ,

e.g., we take a - 0. Then we obtain

-at a
f (t)/I -1 - e T (cos(o t) + sin( t)) (12.3)

n

with

a - 3A /4 +X , (12.4)
Ti T

OT M n 2 _(iA - X)2 , (12.5)

and typical behavior is illustrated in Figs. 5 and 6.

XIII. CONCLUSIONS

An excited atom near a surface has a different lifetime 1/A than in free

space. Standard methods to measure A and its dependence on the distance of the

*O atom to the surface are: (1) A equals the full width of the low-intensity

absorption profile and (2) 1/A equals the delay time in the emission of a

fluorescent photon after excitation of the atom. In this paper we considered the

situation where the atom is continuously driven by a laser field, and we

evaluated the temporal correlation between photons of the emitted fluorescence.

P' After presentation of the general theory, we focussed on the Jg 0 - J - 1

transition. In the most simple case, where the irradiance is monochromatic (A -

0), exactly on resonance (a - 0), sufficiently weak (OR + 0),

4l



and has a polarization n, we found (Eq. (12.2))

-JA nt )2.

We conclude that the two-photon correlation function f(t), which is accessible to

observation by a photon counter, is essentially determined by the lifetime I/A

of the driven upper substate of the atom. This result will possibly provide an

alternative optical technique for the investigation of atoms near a metal

surface.

ACKNOWLEDGMENTS

This research was supported by the Office of Naval Research and the Air

Force Office of Scientific Research (AFSC), United States Air Force, under

A! Contract F49620-86-C-0009. The United States Government is authorized to

reproduce and distribute reprints for governmental purposes notwithstanding any

C,, copyright notation hereon.I'C,

,1'



24

REFERENCES

1. B. R. Mollow, Phys. Rev. 188, 1969 (1969).

2. H. J. Carmichael and D. F. Walls, J. Phys. B 2, 1199 (1976).

3. H. J. Kimble and L. Mandel, Phys. Rev. A 13, 2123 (1976).

4. F. Schuda, C. R. Stroud, Jr. and M. Hercher, J. Phys. B. 7, L198 (1974).

5. H. Walter, Proc. Sec. Laser Spec. Conf., Megeve, France (Springer, Berlin,

1975).

6. F. Y. Wu, R. E. Grove and S. Ezekiel, Phys. Rev. Lett. 35, 1426 (1975).

7. H. J. Kimble, M. Dagenais and L. Mandel, Phys. Rev. Lett. 39, 691 (1977).

8. H. J. Kimble, M. Dagenais and L. Mandel, Phys. Rev. A 18, 201 (1978).

9. F. Diedrich and H. Walter, Phys. Rev. Lett. 58, 203 (1987).

10. R. Short and L. Mandel, Phys. Rev. Lett. 51, 384 (1983).

11. P. A. Apanasevich and S. Ja. Kilin, Phys. Lett. 62 A, 83 (1977).

12. P. A. Apanasevich and S. Ja. Kilin, J. Phys. B 12, L83 (1979).

13. J. Dalibard and S. Reynaud, J. Physique (Paris) 44, 1337 (1983).

14. A. Aspect, G. Roger, S. Reynaud, J. Dalibard and C. Cohen-Tannoudji, Phys.

Rev. Lett. 45, 617 (1984).

15. H. F. Arnoldus and G. Nienhuis, J. Phys. B 17, 963 (1984).

16. H. F. Arnoldus and G. Nienhuis, Opt. Coimmun. 48, 322 (1984).

1 17. D. Kleppner, Phys. Rev. Lett. 47, 233 (1981).

18. G. S. Agarwal, Phys. Rev. Lott. 32, 703 (1974).

19. P. W. Milonni and P. L. Knight, Opt. Commun. 9, 119 (1973).

20. K. H. Drexhage, in Progress in Optics, Vol. XII, ed. by 1. Wolf (North-

Holland, Amsterdam, 1974), p. 165.

21. A. Adams, R. W. Rendell, R. W. Garnett and P. K. Bansma, Opt. Commun. 34,

417 (1980).

22. W. Lukosz and M. Meier, Opt. Lett. 6, 251 (1981).

SI



N25

23. J. F. Owen, P. W. Barber, P. B. Dorain and R. K. Chang, Phys. Rev. Lett. 47,

1075 (1981).

24. D. A. Weitz, S. Garoff, C. D. Hanson, T. J. Gramila and J. I. Gersten, Opt.

Lett. 7, 89 (1982).

25. R. R. Chance, A. Prock and R. Silbey, Adv. Chem. Phys. 39, 1 (1978).

26. X. Y. Huang, J. Lin and T. F. George, J. Chem. Phys. 80, 893 (1984).

27. X. Y. Huang and T. F. George, J. Phys. Chem. 88, 4801 (1984).

28. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Wiley, New

York, 1975).

29. H. F. Arnoldus and T. F. George, J. Chem. Phys. (1987) in press.

30. C. Cohen-Tannoudji, in Frontiers in Laser Spectroscopy, Proc. 27th Les

Houches Sumner School, ed. by R. Balian, S. Haroche and S. Liberman (North-

Holland, Amsterdam, 1977).

31. P. L. Knight and P. W. Milonni, Phys. Rep. 66, 23 (1980).

32. M. Weissbluth, Atoms and Molecules (Academic Press, New York, 1978), p. 159.

33. G. S. Agarwal, Phys. Rev. A 18, 1490 (1978).

34. R. F. Fox, J. Math. Phys. 13, 1196 (1972).

35. R. J. Glauber, in Quantum Optics and Electronics, ed. by C. DeWitt, A.

Blandin and C. Cohen-Tannoudji (Gordon and Breach, New York, 1965).

36.. P. L. Kelley and W. H. Kleiner, Phys. Rev. 136, A 316 (1964).

37. H. F. Arnoldus and G. Nienhuis, Optica Acta 30, 1573 (1983).

38. H. Paul, Rev. Mod. Phys. 54, 1061 (1982).

P..

ejiaI lii aI



26

FIGURE CAPTIONS

FiS. 1. Plot of the two-photon correlation function f (t)/I in the low-

intensity limit. Time and frequencies are given in units of 1/Af and Aft

respectively, and the distance between the atom and the surface h is in units of

an optical wavelength 2wc/wo . In this figure we take h - 0.2, A = 0.5 and linear
0

polarization. Curves a, b and c illustrate the dependence on the detuning, with

A = 0, 2 and 4, respectively. Notice that f(t) can become larger than f(-),

which implies an enhancement for the detection of a photon at time t after the

detection of a photon at time zero, in comparison with the uncorrelated detection

probability I.

Fig. 2. Same as Fig. I but now we vary the laser linewidth as A 0.2, 0.6 and

3.0 for curves a, b and c, respectively, and the detuning is fixed at a - 4. For

a large bandwidth, curve c, the oscillatory structure is washed out entirely.

Fig. 3. Low-intensity f (t) for h - 0.2, A - 0.1 and A - 2. Curves a and b

correspond to linear and circular laser polarization, respectively.

Fig. 4. Two-photon correlation in the low-intensity limit with A - 0.2, A - 2

and circular polarization. This picture illustrates the dependence on the atom-

surface distance h, with h - 0.05 and 0.1 for curves a and b, respectively. In

curve a the approach to f n(-)/I - I for increasing time occurs very slowly.

This can be understood from the fact that for circular polarization the atom

behaves effectively as a parallel dipole. Its matrix element, which determines

the inverse lifetime, tends to zero for h -* 0, and therefore the lifetime itself

becomes very large. This in turn prohibits the emission of the second photon at

t > 0, after emission of the first photon and subsequent excitation by the laser.

Fig. 5. Correlation function for zero detuning, h - 0.1, A - 0.5 and R - 3.

Curves a and b correspond to linear and circular polarization, respectively.



, Fi. 6. The parameters in this figure are A - 0.5, a - 0, QR = 8, and the laser

is circularly polarized. Curves a and b represent the change in correlation as a

function of h. We take h - 0.1 and 1 for a and b respectively. It appears that

the atom-surface distance can affect the photon-correlation function

dramatically, which implies that a measurement of f (t)/I might appear to be a
n n)

sensitive technique for the determination of h of atomic adsorbates.
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